If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+44x+120=0
a = 1; b = 44; c = +120;
Δ = b2-4ac
Δ = 442-4·1·120
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{91}}{2*1}=\frac{-44-4\sqrt{91}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{91}}{2*1}=\frac{-44+4\sqrt{91}}{2} $
| 0.60x-9=30 | | 0.60x-9=30 | | 7x-95=3x-31 | | 4×+3=5y | | 9y-3(y+4)=72 | | 7(a+3)=(5a+3) | | -8=6a-8(2+a) | | 2(w-2)-9w=-46 | | -35=10v-3v | | 8(7+p)=64 | | 8(7+p)=64 | | -7(s+9)=-56 | | -2=-3q-11 | | 3k=3=33-2 | | 3k=3=33-2 | | 3k=3=33-2 | | 3k=3=33-2 | | 3k=3=33-2 | | 3k=3=33-2 | | 3k=3=33-2 | | 3k=3=33-2 | | 3k=3=33-2 | | 8x-1=5x+29 | | 4(3x-2)-(5x+3)=2.5(x-8)+16 | | O.8s=0.48 | | 23-4x=2x-7 | | 5p2-28p+32=0 | | 10f+5=5(+) | | 10f+5=5(+) | | 12x+24-30x+12=-3 | | 12x+24-30x+12=-3 | | 12x+24-30x+12=-3 |